The lasso, persistence, and cross-validation

نویسندگان

  • Darren Homrighausen
  • Daniel J. McDonald
چکیده

During the last fifteen years, the lasso procedure has been the target of a substantial amount of theoretical and applied research. Correspondingly, many results are known about its behavior for a fixed or optimally chosen smoothing parameter (given up to unknown constants). Much less, however, is known about the lasso’s behavior when the smoothing parameter is chosen in a data dependent way. To this end, we give the first result about the risk consistency of lasso when the smoothing parameter is chosen via cross-validation. We consider the high-dimensional setting wherein the number of predictors p = n, α > 0 grows with the number of observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oracle inequalities for cross-validation type procedures

Abstract We prove oracle inequalities for three different type of adaptation procedures inspired by cross-validation and aggregation. These procedures are then applied to the construction of Lasso estimators and aggregation with exponential weights with data-driven regularization and temperature parameters, respectively. We also prove oracle inequalities for the crossvalidation procedure itself...

متن کامل

Penalized Lasso Methods in Health Data: application to trauma and influenza data of Kerman

Background: Two main issues that challenge model building are number of Events Per Variable and multicollinearity among exploratory variables. Our aim is to review statistical methods that tackle these issues with emphasize on penalized Lasso regression model.  The present study aimed to explain problems of traditional regressions due to small sample size and m...

متن کامل

Relaxed Lasso

The Lasso is an attractive regularisation method for high dimensional regression. It combines variable selection with an efficient computational procedure. However, the rate of convergence of the Lasso is slow for some sparse high dimensional data, where the number of predictor variables is growing fast with the number of observations. Moreover, many noise variables are selected if the estimato...

متن کامل

Beating the Simple Average: Egalitarian LASSO for Combining Economic Forecasts

Despite the clear success of forecast combination in many economic environments, several important issues remain incompletely resolved. The issues relate to selection of the set of forecasts to combine, and whether some form of additional regularization (e.g., shrinkage) is desirable. Against this background, and also considering the frequently-found superiority of simple-average combinations, ...

متن کامل

Modified Cross-Validation for Penalized High-Dimensional Linear Regression Models

In this article, for Lasso penalized linear regression models in high-dimensional settings, we propose a modified cross-validation (CV) method for selecting the penalty parameter. The methodology is extended to other penalties, such as Elastic Net. We conduct extensive simulation studies and real data analysis to compare the performance of the modified CV method with other methods. It is shown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013